1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Adolph Hitt edited this page 2025-02-15 05:00:13 +00:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations varying from 1.5 to 70 billion criteria to construct, experiment, setiathome.berkeley.edu and responsibly scale your generative AI concepts on AWS.

In this post, we show how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled variations of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that utilizes support finding out to enhance thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key distinguishing function is its reinforcement knowing (RL) action, which was used to improve the model's actions beyond the standard pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adjust more efficiently to user feedback and objectives, ultimately improving both relevance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, suggesting it's geared up to break down complex inquiries and reason through them in a detailed way. This guided thinking process enables the design to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT abilities, aiming to produce structured actions while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has actually captured the industry's attention as a versatile text-generation model that can be incorporated into different workflows such as agents, sensible reasoning and information interpretation tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture enables activation of 37 billion parameters, allowing efficient reasoning by routing queries to the most appropriate professional "clusters." This technique allows the model to concentrate on different issue domains while maintaining overall performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 model to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective models to mimic the habits and reasoning patterns of the bigger DeepSeek-R1 model, utilizing it as a teacher design.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous material, and assess models against crucial security requirements. At the time of writing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create several guardrails tailored to different usage cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limitation increase, develop a limitation increase demand and reach out to your account group.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For instructions, see Set up approvals to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, prevent harmful material, and examine models against key security criteria. You can carry out safety procedures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic circulation involves the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After receiving the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the last outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following sections demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, forum.pinoo.com.tr complete the following steps:

1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and select the DeepSeek-R1 model.

The model detail page offers important details about the model's abilities, rates structure, and implementation guidelines. You can find detailed usage directions, including sample API calls and code bits for integration. The design supports different text generation tasks, including content creation, code generation, and concern answering, utilizing its support finding out optimization and CoT reasoning abilities. The page also includes release choices and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, pick Deploy.

You will be prompted to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Number of instances, go into a variety of circumstances (between 1-100). 6. For Instance type, choose your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can set up innovative security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service function authorizations, bio.rogstecnologia.com.br and encryption settings. For most utilize cases, the default settings will work well. However, for production deployments, you might wish to review these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the implementation is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive user interface where you can explore different triggers and change design specifications like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal results. For instance, content for reasoning.

This is an excellent way to check out the model's thinking and text generation capabilities before integrating it into your applications. The play area supplies immediate feedback, helping you comprehend how the model reacts to different inputs and letting you fine-tune your triggers for optimum results.

You can rapidly check the model in the play area through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime client, sets up inference parameters, and sends a demand to generate text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML options that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart offers two hassle-free approaches: using the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you pick the technique that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design web browser shows available models, with details like the supplier name and design abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card reveals crucial details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if appropriate), showing that this model can be registered with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the design card to view the model details page.

    The design details page consists of the following details:

    - The design name and service provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you deploy the design, it's suggested to evaluate the design details and license terms to verify compatibility with your use case.

    6. Choose Deploy to continue with implementation.

    7. For Endpoint name, utilize the instantly produced name or develop a custom one.
  1. For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the variety of circumstances (default: 1). Selecting proper circumstances types and counts is important for expense and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for accuracy. For this model, we strongly suggest adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to deploy the model.

    The deployment process can take numerous minutes to finish.

    When release is total, your endpoint status will change to InService. At this point, the model is all set to accept inference demands through the endpoint. You can keep an eye on the deployment progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the release is total, you can invoke the design utilizing a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the essential AWS permissions and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for inference programmatically. The code for deploying the design is offered in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Clean up

    To prevent undesirable charges, complete the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the design using Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace releases.
  5. In the Managed releases section, locate the endpoint you want to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the right implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker .

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build ingenious services using AWS services and sped up calculate. Currently, he is concentrated on establishing techniques for fine-tuning and enhancing the reasoning efficiency of big language models. In his downtime, Vivek delights in hiking, seeing movies, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing services that assist clients accelerate their AI journey and unlock company value.